On the use of high-order feature propagation in Graph Convolution Networks with Manifold Regularization

نویسندگان

چکیده

Graph Convolutional Networks (GCNs) have received a lot of attention in pattern recognition and machine learning. In this paper, we present revisited scheme for the new method called ”GCNs with Manifold Regularization” (GCNMR). While manifold regularization can add additional information, GCN-based semi-supervised classification process cannot consider full layer-wise structured information. Inspired by graph-based label propagation approaches, will integrate high-order feature into each GCN layer. High-order over graph fully exploit information provided latter at all GCN’s layers. It exploits clustering assumption, which is valid data but not well exploited GCNs. Our proposed would lead to more informative Using model, conduct several experiments on public image datasets containing objects, faces digits: Extended Yale, PF01, Caltech101 MNIST. We also three citation networks. The performs compared methods. With respect recent GCNMR approach, average improvements were 2.2%, 4.5%, 1.0% 10.6% MNIST, respectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the impact of musical texts on the text recall of young learners of english in isfahan junior high schools

abstract although music possesses some kind of power and using it has been welcome by many students in language classrooms, it seems that they take a non-serious image of the lesson while listening to songs and they may think that it is a matter of fun. the main objective of the present study was to investigate whether learning a foreign language through musical texts (songs) can have an impac...

15 صفحه اول

focus on communication in iranian high school language classes: a study of the role of teaching materials in changing the focus onto communication in language classes

چکیده ارتباط در کلاس به عوامل زیادی از جمله معلمان، دانش آموزان، برنامه های درسی و از همه مهم تر، مواد آموزشی وابسته است. در تدریس ارتباطی زبان که تاکید زیادی بر توانش ارتباطی دارد، کتاب درسی به عنوان عامل موثر بر پویایی کلاس محسوب میگردد که درس ها را از طریق فراهم آوردن متن ارتباط کلاسی و هم چنین نوع تمرین زبانی که دانش آموزان در طول فعالیت های کلاسی به آن مشغول اند، کنترل می کند. این حقیقت ک...

15 صفحه اول

Convolution on Graph: A High-Order and Adaptive Approach

In this paper, we presented a novel convolutional neural network framework for graph modeling, with the introduction of two new modules specially designed for graph-structured data: the k-th order convolution operator and the adaptive filtering module. Importantly, our framework of High-order and Adaptive Graph Convolutional Network (HA-GCN) is a general-purposed architecture that fits various ...

متن کامل

Learning Graph Convolution Filters from Data Manifold

Convolution Neural Network (CNN) has gained tremendous success in computer vision tasks with its outstanding ability to capture the local latent features. Recently, there has been an increasing interest in extending CNNs to the general spatial domain. Although various types of graph and geometric convolution methods have been proposed, their connections to traditional 2D-convolution are not wel...

متن کامل

on the relationship between self- regulated learning strategies use and willingness to communicate in the context of writing

این تحقیق به منظور بررسی رابطه بین میزان استراتژیهای خود-تنظیم شده یادگیری و تمایل به ایجاد ارتباط دانشجویان زبان انگلیسی انجام شده است.علاوه بر این،روابط و کنش های موجود بین ریزسنجه های استراتژیهای خود-تنظیم شده یادگُیری ، مهارت نگارش و تمایل به برقراری ارتباط و همچنین تاٍثیرجنسیت دانشجویان زبان انگلیسی در استراتژیهای خود-تنظیم شده یادگیری و تمایل به برقراری ارتباط آنها مورد بررسی قرار گرفته شد.

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Information Sciences

سال: 2022

ISSN: ['0020-0255', '1872-6291']

DOI: https://doi.org/10.1016/j.ins.2021.10.041